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develop  probabilistic model for network data to discover latent communities where nodes interact 
Motivation:

Mixed membership 
stochastic block models 
(Airoldi et al. 2008)
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Contributions of proposed model:
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2. Nodes’sociabilities and community memberships

2.1. Draw nodes sociabilities with the 
Generalized Gamma Process 

(as Caron and Fox (2017))

2.2 Draw nodes memberships to  communities 
(as Airoldi et al. (2008))
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• Assign edges to node pairs :(xe1, xe2)
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• Draw global frequency of communities:
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example with  
communities

K = 4

• Assign community memberships to nodes:

πi = (πi1, …, πiK) ∣ β ind∼ Dirichlet (ζβ1, …, ζβK)

β1 β2
β3

β4

ζ⟶

• Nodes are sampled with a 2d point process:

Wα = {(wi, li) : {wi} ∼ GGP(σ, τ), {li} ∼ λ(dl), li < α}
  network sparsity

  decay of degree distribution

  network size

σ →
τ →
α →

• Set   small for heterogeneous membershipsζ

• Learn # communities  by setting:K

➡  upper bound to K Ktrue
➡ γ < K

➡ Approximates Hierarchical Dirichlet Process 
as K → ∞

Details:

➡ Encourages learn sparse β

• Properties:P(xe1 = i) =
wi

W̄α
, P(xe2 = j) =

wj

W̄α

4.1 Graphical representation of proposed model

4.  Posterior inference
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4.2 Gibbs MCMC sampler
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3. Thinning

3.1 For each edge, assign nodes to communities:

• Thin (remove) edges when nodes are assigned to different communities:

• Keep edges when nodes are assigned to the same communities:

3.2 Transform latent directed multigraph to observed undirected graph:
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xe1 = i

xe2 = j

ce1 ∼ Cat(πi)⟶

⟶ ce2 ∼ Cat(πj)

⟶

⟶

xe′￼1 = i

xe′￼2 = z

⟶

⟶

ce′￼1 ∼ Cat(πi)

ce′￼2 ∼ Cat(πz)

⟶

⟶

5. Related models

Similarity of true and estimated memberships

Learn # 
communities

Sparse block model 
(Herlau et. al2) Sparse Degree 

heterogeneity

Single 
community 
membership

Sparse mixed 
membership 
(Todeschini et. al3)

Sparse Degree 
heterogeneity

Multiple

community 
sociabilities 
(non-regularized)

Node  has:i
Thinned Generalized Gamma Process (TGGP - proposed model)

• one sociability: {wi} ∼ GGP(σ, τ)

• a vector of community memberships (summing to one):

πi
iid∼ Dirichlet (ζβ1, …, ζβK)

Node  has K sociabilities: i (wi1, …, wiK)

Compound Generalized Gamma Process (CGGP)

*wik = wi0 ηik

Base sociability:  {wi0} ∼ GGP(σ, τ)}


 ηik
ind∼ Gamma(ak, bk)

Community 
multiplier:

6. Results

1. Fit model on fully observed data

2. Learn node-specific interaction parameters (e.g. nodes sociabilities and community 

memberships)

3. Use node-specific interaction parameters to predict edges (two prediction tasks)

Real-world data: posterior predictive accuracy
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