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Motivation Bayesian dynamic biclustering model Statistical inference
Many neuroscience studies follow multiple units, or subjects, during a period of Data Model Perform posterior inference via Markov Chain Monte Carlo.
time, collecting several measurements for each unit at specific time intervals. 1. Profile variables: Update profile probabilities it conditional on subject assignments,

Consider the following fMRI and EEG datasets:

resample their concentration hyperparameter , update subjects' assignment to
profiles (sy, ..., Sy) conditional on 7.
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; § Sueaze black o . « Extend nested partition model to time-series setting each profile and time step.
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time (min) « Each subject has one of Z profiles 3. Likelihood parameters: For each state, sample its associated likelihood parameters
e Each profile is identified by a time-varying partition of measurements into states 0. conditional on state assignment sequences for all observations.
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The likelihood model for an observation Y; , , of subject i , measurement r, at time
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Develop model to simultaneously cluster time-series data along two ?_ o
0 dimensions to identify: In our experiments we let 0 = {y;, 6.} be the parameters of a location-scale t-
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Nested biclust Clusters along one dimension (e.g. measurement r.t >t rt U Ch Vrt 1 > K time (ms)
e_s e .IC usters clusters) are nested within clusters along the other o .
(SIngle tlme Step) dimension (eg Subject C|usters)_ where }/7(,? | Clt(z) =~ Bernoulli (Clt(z)) and Clt(z) ~ Beta(a, ,B)
Lee et al. (2013)' and . . . " _ ] FUture dlreCtlons
That is, e.g., each subject cluster is identified by a Profile and state assignments

Lin et al. (2022)2 - Incorporate time-invariant covariates —> study how clustering depends on covariates

Finite approximation to Dirichlet process (DP) to learn number of profiles from data: - Relax assumption that subjects with the same profile must share the same temporal
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J -5 =5 r r s.|z | Categorical (ﬂp ---,ﬂz), partition for all measurements —> can include more measurements and automatically
select relevant ones

x| £ ~ Dirichlet(, ..., ), . _ _ . .
K (& 6) - Allow partition of subjects to vary over time —> analyze longer time periods or

specific partition of measurements
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partitions model Custers along one dimension (e.g. measurements) whereweletZ =N, { = ~ and € ~ Gammal(b,, b,) (Malsiner-Walli et al. 2016)% experiments with multiple heterogeneous tasks
(tRPM) evolve over time based on a Markov model Similar model for the states (approximation of hierarchical DP). States are shared References
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