

Dynamic biclustering for multi-subject neuroscience studies

thanks to

Joint work with E. Sudderth, J. Lee, M. Peters, M. Vannucci, M. Guindani

Bayesian dynamic biclustering model | Statistical inference

Motivation

Our

Goal

References

- 1. Lee, Juhee, Peter Müller, Yitan Zhu, and Yuan Ji. "A nonparametric Bayesian model for local clustering with application to proteomics." *Journal of the American Statistical Association* 108.503 (2013): 775-788.
- 2. Lin, Qiaohui, Giovanni Rebaudo, and Peter Mueller. "Separate exchangeability as modeling principle in Bayesian nonparametrics." arXiv preprint arXiv:2112.07755 (2021).
- 3. Page, Garritt L., Fernando A. Quintana, and David B. Dahl. "Dependent modeling of temporal sequences of random partitions." *Journal of Computational and Graphical Statistics* 31.2 (2022): 614-627.
- 4. Malsiner-Walli, Gertraud, Sylvia Frühwirth-Schnatter, and Bettina Grün. "Model-based clustering based on sparse finite Gaussian mixtures." *Statistics and computing* 26.1-2 (2016): 303-324.

Develop model to **simultaneously cluster time-series data along two dimensions** to identify:

- Extend nested partition model to time-series setting
- Each subject has one of Z profiles
- Each profile is identified by a time-varying partition of measurements into states
- Model evolution of measurement states similarly as tRPM

- clusters of subjects who are similar throughout the experiment (*profiles*)
- groups of associated measurements (e.g. ROIs/brain regions) at each time step (*states*)

for each
$$
i, j : s_i = s_j \rightarrow c_r^{(i)} = c_r^{(j)} \forall r \in R
$$

Perform posterior inference via Markov Chain Monte Carlo.

- 1. Profile variables: Update profile probabilities π conditional on subject assignments, resample their concentration hyperparameter ζ , update subjects' assignment to profiles $(s_1, ..., s_N)$ conditional on $\pmb{\pi}.$
- 2. State variables: Update vector of global state probabilities ω_0 , and its concentration hyperparameter η . For each profile z , sample the profile-specific vector of state probabilities $\bm{\omega}_z$ conditional on $\bm{\omega}_0$. Update the state persistence indicator $\gamma^{(z)}_{r,t}$ and the state assignment $c_{r,t}^{(z)}$ for each profile, measurement and time step. Update the probability of state persistence $a_t^{(z)}$ conditional on all state persistence indicators, for each profile and time step.
- 3. **Likelihood parameters**: For each state, sample its associated likelihood parameters $\boldsymbol{\theta}_k$ conditional on state assignment sequences for all observations.

In our experiments we let $\theta = \{\mu_k, \sigma_k\}$ be the parameters of a location-scale tdistribution, interpretable but diffuse enough to allow for some heterogeneity between observations assigned to the same state.

where $\gamma_{r,t}^{(z)} \mid a_t^{(z)} \stackrel{ind}{\sim}$ Bernoulli $\left(a_t^{(z)}\right)$ and $\left.a_t^{(z)} \stackrel{ud}{\sim} \text{Beta}(\alpha,\beta).$ $\overset{ind}{\sim}$ Bernoulli $\left(a_t^{(z)}\right)$ and $a_t^{(z)}$ *iid* ∼ Beta(*α*, *β*)

where we let $Z = N$, $\zeta = \frac{1}{Z}$ and $\varepsilon \sim \text{Gamma}(b_1, b_2)$ (Malsiner-Walli et al. 2016) $^{\text{4)}}$ *ε Z* $\varepsilon \thicksim$ Gamma (b_1, b_2) Similar model for the states (approximation of hierarchical DP). States are shared across profiles but state probabilities are profile-specific:

Idea

Related work

Nested biclusters (single time step)

Temporal random partitions model (tRPM) (single subject)

Lee et al. (2013)**1** and Lin et al. (2022)**²**

Clusters along one dimension (e.g. measurement clusters) are nested within clusters along the other dimension (e.g. subject clusters).

That is, e.g., each subject cluster is identified by a specific partition of measurements

Custers along one dimension (e.g. measurements) evolve over time based on a Markov model

$$
c_{rt} \mid c_{r,t-1} = \begin{cases} c_{r,t-1} & \text{with prob } a_t \\ \text{new cluster } c_{rt}^* & \text{with prob } 1 - a_t \end{cases}
$$

Federica Zoe Ricci [\(fzricci@uci.edu\)](mailto:fzricci@uci.edu)

Page et al. (2022)**³**

Likelihood model

The likelihood model for an observation $Y_{i,r,t}$ of subject i , measurement r , at time step t is determined by the state $c_{r,t}^{(s_i)} \in \{1,...,K\}$, common to all subjects with the same profile s_i as subject i

$$
Y_{i,r,t} \mid c_{r,t}^{(s_i)} = k, \theta_k^* \stackrel{iid}{\sim} F_{\theta_k^*}
$$

Evolution of measurement states

- Incorporate time-invariant covariates \rightarrow study how clustering depends on covariates - Relax assumption that subjects with the same profile must share the same temporal partition for all measurements —> can include more measurements and automatically
- select relevant ones - Allow partition of subjects to vary over time \rightarrow analyze longer time periods or experiments with multiple heterogeneous tasks

Account for temporal dependences by encouraging measurements to persist in the same state over consecutive time-steps, while allowing for states to change and for learning the number and position of changepoints from the data:

$$
c_{r,t}^{(z)} \mid \omega^{(z)}, \gamma_{r,t}^{(z)} \stackrel{ind}{\sim} \gamma_{r,t}^{(z)} \delta_{c_{r,t-1}^{(z)}} + \left(1 - \gamma_{r,t}^{(z)}\right) \text{Categorical}(\omega_1^{(z)}, \dots
$$

Profile and state assignments

$$
s_i | \pi \mid \text{Categorical } (\pi_1, ..., \pi_Z),
$$

$$
\pi | \zeta \sim \text{Dirichlet}(\zeta, ..., \zeta),
$$

Finite approximation to Dirichlet process (DP) to learn number of profiles from data:

$$
\omega^{(z)} \mid \omega_0 \stackrel{iid}{\sim} \text{Dirichlet}(\phi \omega_{01}, ..., \phi \omega_{0K}), \quad z = 1,..., Z
$$

$$
\omega_0 \mid \eta \sim \text{Dirichlet}\left(\frac{\eta}{K}, ..., \frac{\eta}{K}\right)
$$

Many neuroscience studies follow multiple units, or subjects, during a period of time, collecting several measurements for each unit at specific time intervals. Consider the following fMRI and EEG datasets:

1 6 9 10 12 20 2 3 4 5 7 8 13 14 15 16 17 18 19 23 11 21 22

7813
LLL

subject

0.00 0.25 0.50 0.75 1.00 **Future directions**

fMRI data

F

data

EEG data

EEG

 $\omega^{(z)}_1, \ldots, \omega^{(z)}_K)$

Profiles State assignments