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Subjects = 23
ROIs = 11
Time steps = 78

Subjects = 121
Brain regions = 3
Time steps = 10

Develop model to simultaneously cluster time-series data along two 
dimensions to identify:
- clusters of subjects who are similar throughout the experiment (profiles)
- groups of associated measurements (e.g. ROIs/brain regions) at each 

time step (states)

for each i, j : si = sj → c(i)
r = c( j)

r ∀r ∈ R

Perform posterior inference via Markov Chain Monte Carlo.
1. Profile variables: Update profile probabilities  conditional on subject assignments, 

resample their concentration hyperparameter , update subjects' assignment to 
profiles  conditional on .

2. State variables: Update vector of global state probabilities , and its concentration 
hyperparameter . For each profile , sample the profile-specific vector of state 
probabilities  conditional on . Update the state persistence indicator  and the 

state assignment  for each profile, measurement and time step. Update the 

probability of state persistence  conditional on all state persistence indicators, for 
each profile and time step.

3. Likelihood parameters: For each state, sample its associated likelihood parameters 
 conditional on state assignment sequences for all observations.
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• Extend nested partition model to time-series setting
• Each subject has one of  profiles
• Each profile is identified by a time-varying partition of measurements into states 
• Model evolution of measurement states similarly as tRPM
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Related work

Nested biclusters 
(single time step)

Temporal random 
partitions model

(tRPM)
(single subject)

Lee et al. (2013)1 and 
Lin et al. (2022)2

Clusters along one dimension (e.g. measurement 
clusters) are nested within clusters along the other 
dimension (e.g. subject clusters).

That is, e.g., each subject cluster is identified by a 
specific partition of measurements

Custers along one dimension (e.g. measurements) 
evolve over time based on a Markov model

crt ∣ cr,t−1 = {
cr,t−1 with prob at

new cluster c*rt with prob 1 − at
Page et al. (2022)3

Likelihood model

Yi,r,t ∣ c(si)
r,t = k, θ*k

iid∼ Fθ*k

The likelihood model for an observation  of subject  , measurement  , at time 

step  is determined by the state , common to all subjects with the 
same profile  as subject 

Yi,r,t i r
t c(si)

r,t ∈ {1,…, K}
si i

In our experiments we let  be the parameters of a location-scale t-
distribution, interpretable but diffuse enough to allow for some heterogeneity 
between observations assigned to the same state.

θ = {μk, σk}

Evolution of measurement states
Account for temporal dependences by encouraging measurements to persist in the 
same state over consecutive time-steps, while allowing for states to change and for 
learning the number and position of changepoints from the data:

c(z)
r,t ∣ ω(z), γ(z)

r,t
ind∼ γ(z)

r,t δc(z)
r,t−1

+ (1 − γ(z)
r,t )Categorical(ω(z)

1 , …, ω(z)
K )

where  and  .γ(z)
r,t ∣ a(z)

t
ind∼ Bernoulli (a(z)

t ) a(z)
t

iid∼ Beta(α, β)

Profile and state assignments

si ∣ π
iid
∣ Categorical (π1, …, πZ),

π ∣ ζ ∼ Dirichlet(ζ, …, ζ),

Finite approximation to Dirichlet process (DP) to learn number of profiles from data:

where we let ,  and  (Malsiner-Walli et al. 2016)4)Z = N ζ =
ε
Z

ε ∼ Gamma(b1, b2)
Similar model for the states (approximation of hierarchical DP). States are shared 
across profiles but state probabilities are profile-specific:

ω(z) ∣ ω0
iid∼ Dirichlet(ϕ ω01, …, ϕ ω0K), z = 1,…, Z

ω0 ∣ η ∼ Dirichlet( η
K

, …,
η
K )

Many neuroscience studies follow multiple units, or subjects, during a period of 
time, collecting several measurements for each unit at specific time intervals.
Consider the following fMRI and EEG datasets:
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Future directions
- Incorporate time-invariant covariates —> study how clustering depends on covariates
- Relax assumption that subjects with the same profile must share the same temporal 

partition for all measurements —> can include more measurements and automatically 
select relevant ones

- Allow partition of subjects to vary over time —> analyze longer time periods or 
experiments with multiple heterogeneous tasks
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